Voxel-based logistic analysis of PPMI control and Parkinson's disease DaTscans
نویسندگان
چکیده
A comprehensive analysis of the Parkinson's Progression Markers Initiative (PPMI) Dopamine Transporter Single Photon Emission Computed Tomography (DaTscan) images is carried out using a voxel-based logistic lasso model. The model reveals that sub-regional voxels in the caudate, the putamen, as well as in the globus pallidus are informative for classifying images into control and PD classes. Further, a new technique called logistic component analysis is developed. This technique reveals that intra-population differences in dopamine transporter concentration and imperfect normalization are significant factors influencing logistic analysis. The interactions with handedness, sex, and age are also evaluated.
منابع مشابه
P 24: Evaluation of the Voxel Based Morphometry in Quantitative Analysis of Brain MRI Images
Introduction: Voxel based morphometry is a type of statistical parametric mapping that can be used to investigate the effect of diseases such as epilepsy, Alzheimer's disease and Parkinson's disease or other agent such as skills on brain structure (white matter, gray matter and cerebrospinal fluid). The aim of this study is evaluate the effectiveness of this method in detection of differen...
متن کاملRisk variants of the α-synuclein locus and REM sleep behavior disorder in Parkinson’s disease: a genetic association study
BACKGROUND Parkinson's disease is a heterogeneous disorder where genetic factors may underlie clinical variability. Rapid eye movement sleep behavior disorder (RBD) is a parasomnia strongly linked to synucleinopathies, including Parkinson's disease. We hypothesized that SNCA variants conferring risk of Parkinson's disease would also predispose to an RBD phenotype. METHODS We assessed possible...
متن کاملComparison of machine learning and semi-quantification algorithms for (I123)FP-CIT classification: the beginning of the end for semi-quantification?
BACKGROUND Semi-quantification methods are well established in the clinic for assisted reporting of (I123) Ioflupane images. Arguably, these are limited diagnostic tools. Recent research has demonstrated the potential for improved classification performance offered by machine learning algorithms. A direct comparison between methods is required to establish whether a move towards widespread clin...
متن کاملPredictive Big Data Analytics: A Study of Parkinson’s Disease Using Large, Complex, Heterogeneous, Incongruent, Multi-Source and Incomplete Observations
BACKGROUND A unique archive of Big Data on Parkinson's Disease is collected, managed and disseminated by the Parkinson's Progression Markers Initiative (PPMI). The integration of such complex and heterogeneous Big Data from multiple sources offers unparalleled opportunities to study the early stages of prevalent neurodegenerative processes, track their progression and quickly identify the effic...
متن کاملPatterns of grey matter loss associated with motor subscores in early Parkinson's disease
Classical motor symptoms of Parkinson's disease (PD) such as tremor, rigidity, bradykinesia, and axial symptoms are graded in the Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III. It is yet to be ascertained whether parkinsonian motor symptoms are associated with different anatomical patterns of neurodegeneration as reflected by brain grey matter (GM) alterati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 152 شماره
صفحات -
تاریخ انتشار 2017